Paper ID: 2403.07202

SPAWNing Structural Priming Predictions from a Cognitively Motivated Parser

Grusha Prasad, Tal Linzen

Structural priming is a widely used psycholinguistic paradigm to study human sentence representations. In this work we propose a framework for using empirical priming patterns to build a theory characterizing the structural representations humans construct when processing sentences. This framework uses a new cognitively motivated parser, SPAWN, to generate quantitative priming predictions from theoretical syntax and evaluate these predictions with empirical human behavior. As a case study, we apply this framework to study reduced relative clause representations in English. We use SPAWN to generate priming predictions from two theoretical accounts which make different assumptions about the structure of relative clauses. We find that the predictions from only one of these theories (Participial-Phase) align with empirical priming patterns, thus highlighting which assumptions about relative clause better capture human sentence representations.

Submitted: Mar 11, 2024