Paper ID: 2403.07518
Open-Vocabulary Scene Text Recognition via Pseudo-Image Labeling and Margin Loss
Xuhua Ren, Hengcan Shi, Jin Li
Scene text recognition is an important and challenging task in computer vision. However, most prior works focus on recognizing pre-defined words, while there are various out-of-vocabulary (OOV) words in real-world applications. In this paper, we propose a novel open-vocabulary text recognition framework, Pseudo-OCR, to recognize OOV words. The key challenge in this task is the lack of OOV training data. To solve this problem, we first propose a pseudo label generation module that leverages character detection and image inpainting to produce substantial pseudo OOV training data from real-world images. Unlike previous synthetic data, our pseudo OOV data contains real characters and backgrounds to simulate real-world applications. Secondly, to reduce noises in pseudo data, we present a semantic checking mechanism to filter semantically meaningful data. Thirdly, we introduce a quality-aware margin loss to boost the training with pseudo data. Our loss includes a margin-based part to enhance the classification ability, and a quality-aware part to penalize low-quality samples in both real and pseudo data. Extensive experiments demonstrate that our approach outperforms the state-of-the-art on eight datasets and achieves the first rank in the ICDAR2022 challenge.
Submitted: Mar 12, 2024