Paper ID: 2403.08407

Iterative Online Image Synthesis via Diffusion Model for Imbalanced Classification

Shuhan Li, Yi Lin, Hao Chen, Kwang-Ting Cheng

Accurate and robust classification of diseases is important for proper diagnosis and treatment. However, medical datasets often face challenges related to limited sample sizes and inherent imbalanced distributions, due to difficulties in data collection and variations in disease prevalence across different types. In this paper, we introduce an Iterative Online Image Synthesis (IOIS) framework to address the class imbalance problem in medical image classification. Our framework incorporates two key modules, namely Online Image Synthesis (OIS) and Accuracy Adaptive Sampling (AAS), which collectively target the imbalance classification issue at both the instance level and the class level. The OIS module alleviates the data insufficiency problem by generating representative samples tailored for online training of the classifier. On the other hand, the AAS module dynamically balances the synthesized samples among various classes, targeting those with low training accuracy. To evaluate the effectiveness of our proposed method in addressing imbalanced classification, we conduct experiments on the HAM10000 and APTOS datasets. The results obtained demonstrate the superiority of our approach over state-of-the-art methods as well as the effectiveness of each component. The source code will be released upon acceptance.

Submitted: Mar 13, 2024