Paper ID: 2403.08618

Verifix: Post-Training Correction to Improve Label Noise Robustness with Verified Samples

Sangamesh Kodge, Deepak Ravikumar, Gobinda Saha, Kaushik Roy

Label corruption, where training samples have incorrect labels, can significantly degrade the performance of machine learning models. This corruption often arises from non-expert labeling or adversarial attacks. Acquiring large, perfectly labeled datasets is costly, and retraining large models from scratch when a clean dataset becomes available is computationally expensive. To address this challenge, we propose Post-Training Correction, a new paradigm that adjusts model parameters after initial training to mitigate label noise, eliminating the need for retraining. We introduce Verifix, a novel Singular Value Decomposition (SVD) based algorithm that leverages a small, verified dataset to correct the model weights using a single update. Verifix uses SVD to estimate a Clean Activation Space and then projects the model's weights onto this space to suppress activations corresponding to corrupted data. We demonstrate Verifix's effectiveness on both synthetic and real-world label noise. Experiments on the CIFAR dataset with 25% synthetic corruption show 7.36% generalization improvements on average. Additionally, we observe generalization improvements of up to 2.63% on naturally corrupted datasets like WebVision1.0 and Clothing1M.

Submitted: Mar 13, 2024