Paper ID: 2403.09039

Spatial-temporal Memories Enhanced Graph Autoencoder for Anomaly Detection in Dynamic Graphs

Jie Liu, Xuequn Shang, Xiaolin Han, Wentao Zhang, Hongzhi Yin

Anomaly detection in dynamic graphs presents a significant challenge due to the temporal evolution of graph structures and attributes. The conventional approaches that tackle this problem typically employ an unsupervised learning framework, capturing normality patterns with exclusive normal data during training and identifying deviations as anomalies during testing. However, these methods face critical drawbacks: they either only depend on proxy tasks for general representation without directly pinpointing normal patterns, or they neglect to differentiate between spatial and temporal normality patterns, leading to diminished efficacy in anomaly detection. To address these challenges, we introduce a novel Spatial-Temporal memories-enhanced graph autoencoder (STRIPE). Initially, STRIPE employs Graph Neural Networks (GNNs) and gated temporal convolution layers to extract spatial features and temporal features, respectively. Then STRIPE incorporates separate spatial and temporal memory networks, which capture and store prototypes of normal patterns, thereby preserving the uniqueness of spatial and temporal normality. After that, through a mutual attention mechanism, these stored patterns are then retrieved and integrated with encoded graph embeddings. Finally, the integrated features are fed into the decoder to reconstruct the graph streams which serve as the proxy task for anomaly detection. This comprehensive approach not only minimizes reconstruction errors but also refines the model by emphasizing the compactness and distinctiveness of the embeddings in relation to the nearest memory prototypes. Through extensive testing, STRIPE has demonstrated a superior capability to discern anomalies by effectively leveraging the distinct spatial and temporal dynamics of dynamic graphs, significantly outperforming existing methodologies, with an average improvement of 15.39% on AUC values.

Submitted: Mar 14, 2024