Paper ID: 2403.10069
Boundary Matters: A Bi-Level Active Finetuning Framework
Han Lu, Yichen Xie, Xiaokang Yang, Junchi Yan
The pretraining-finetuning paradigm has gained widespread adoption in vision tasks and other fields, yet it faces the significant challenge of high sample annotation costs. To mitigate this, the concept of active finetuning has emerged, aiming to select the most appropriate samples for model finetuning within a limited budget. Traditional active learning methods often struggle in this setting due to their inherent bias in batch selection. Furthermore, the recent active finetuning approach has primarily concentrated on aligning the distribution of selected subsets with the overall data pool, focusing solely on diversity. In this paper, we propose a Bi-Level Active Finetuning framework to select the samples for annotation in one shot, which includes two stages: core sample selection for diversity, and boundary sample selection for uncertainty. The process begins with the identification of pseudo-class centers, followed by an innovative denoising method and an iterative strategy for boundary sample selection in the high-dimensional feature space, all without relying on ground-truth labels. Our comprehensive experiments provide both qualitative and quantitative evidence of our method's efficacy, outperforming all the existing baselines.
Submitted: Mar 15, 2024