Paper ID: 2403.10550
Semi-Supervised Learning for Anomaly Traffic Detection via Bidirectional Normalizing Flows
Zhangxuan Dang, Yu Zheng, Xinglin Lin, Chunlei Peng, Qiuyu Chen, Xinbo Gao
With the rapid development of the Internet, various types of anomaly traffic are threatening network security. We consider the problem of anomaly network traffic detection and propose a three-stage anomaly detection framework using only normal traffic. Our framework can generate pseudo anomaly samples without prior knowledge of anomalies to achieve the detection of anomaly data. Firstly, we employ a reconstruction method to learn the deep representation of normal samples. Secondly, these representations are normalized to a standard normal distribution using a bidirectional flow module. To simulate anomaly samples, we add noises to the normalized representations which are then passed through the generation direction of the bidirectional flow module. Finally, a simple classifier is trained to differentiate the normal samples and pseudo anomaly samples in the latent space. During inference, our framework requires only two modules to detect anomalous samples, leading to a considerable reduction in model size. According to the experiments, our method achieves the state of-the-art results on the common benchmarking datasets of anomaly network traffic detection. The code is given in the https://github.com/ZxuanDang/ATD-via-Flows.git
Submitted: Mar 13, 2024