Paper ID: 2403.10853

Just Say the Name: Online Continual Learning with Category Names Only via Data Generation

Minhyuk Seo, Seongwon Cho, Minjae Lee, Diganta Misra, Hyeonbeom Choi, Seon Joo Kim, Jonghyun Choi

Requiring extensive human supervision is often impractical for continual learning due to its cost, leading to the emergence of 'name-only continual learning' that only provides the name of new concepts (e.g., classes) without providing supervised samples. To address the task, recent approach uses web-scraped data but results in issues such as data imbalance, copyright, and privacy concerns. To overcome the limitations of both human supervision and webly supervision, we propose Generative name only Continual Learning (GenCL) using generative models for the name only continual learning. But na\"ive application of generative models results in limited diversity of generated data. So, we specifically propose a diverse prompt generation method, HIerarchical Recurrent Prompt Generation (HIRPG) as well as COmplexity-NAvigating eNsembler (CONAN) that selects samples with minimal overlap from multiple generative models. We empirically validate that the proposed GenCL outperforms prior arts, even a model trained with fully supervised data, in various tasks including image recognition and multi-modal visual reasoning. Data generated by GenCL is available at this https URL

Submitted: Mar 16, 2024