Paper ID: 2403.11095
PyroTrack: Belief-Based Deep Reinforcement Learning Path Planning for Aerial Wildfire Monitoring in Partially Observable Environments
Sahand Khoshdel, Qi Luo, Fatemeh Afghah
Motivated by agility, 3D mobility, and low-risk operation compared to human-operated management systems of autonomous unmanned aerial vehicles (UAVs), this work studies UAV-based active wildfire monitoring where a UAV detects fire incidents in remote areas and tracks the fire frontline. A UAV path planning solution is proposed considering realistic wildfire management missions, where a single low-altitude drone with limited power and flight time is available. Noting the limited field of view of commercial low-altitude UAVs, the problem formulates as a partially observable Markov decision process (POMDP), in which wildfire progression outside the field of view causes inaccurate state representation that prevents the UAV from finding the optimal path to track the fire front in limited time. Common deep reinforcement learning (DRL)-based trajectory planning solutions require diverse drone-recorded wildfire data to generalize pre-trained models to real-time systems, which is not currently available at a diverse and standard scale. To narrow down the gap caused by partial observability in the space of possible policies, a belief-based state representation with broad, extensive simulated data is proposed where the beliefs (i.e., ignition probabilities of different grid areas) are updated using a Bayesian framework for the cells within the field of view. The performance of the proposed solution in terms of the ratio of detected fire cells and monitored ignited area (MIA) is evaluated in a complex fire scenario with multiple rapidly growing fire batches, indicating that the belief state representation outperforms the observation state representation both in fire coverage and the distance to fire frontline.
Submitted: Mar 17, 2024