Paper ID: 2403.11694

Object Segmentation-Assisted Inter Prediction for Versatile Video Coding

Zhuoyuan Li, Zikun Yuan, Li Li, Dong Liu, Xiaohu Tang, Feng Wu

In modern video coding standards, block-based inter prediction is widely adopted, which brings high compression efficiency. However, in natural videos, there are usually multiple moving objects of arbitrary shapes, resulting in complex motion fields that are difficult to represent compactly. This problem has been tackled by more flexible block partitioning methods in the Versatile Video Coding (VVC) standard, but the more flexible partitions require more overhead bits to signal and still cannot be made arbitrarily shaped. To address this limitation, we propose an object segmentation-assisted inter prediction method (SAIP), where objects in the reference frames are segmented by some advanced technologies. With a proper indication, the object segmentation mask is translated from the reference frame to the current frame as the arbitrary-shaped partition of different regions without any extra signal. Using the segmentation mask, motion compensation is separately performed for different regions, achieving higher prediction accuracy. The segmentation mask is further used to code the motion vectors of different regions more efficiently. Moreover, the segmentation mask is considered in the joint rate-distortion optimization for motion estimation and partition estimation to derive the motion vector of different regions and partition more accurately. The proposed method is implemented into the VVC reference software, VTM version 12.0. Experimental results show that the proposed method achieves up to 1.98%, 1.14%, 0.79%, and on average 0.82%, 0.49%, 0.37% BD-rate reduction for common test sequences, under the Low-delay P, Low-delay B, and Random Access configurations, respectively.

Submitted: Mar 18, 2024