Paper ID: 2403.11751
Relational Representation Learning Network for Cross-Spectral Image Patch Matching
Chuang Yu, Yunpeng Liu, Jinmiao Zhao, Dou Quan, Zelin Shi
Recently, feature relation learning has drawn widespread attention in cross-spectral image patch matching. However, existing related research focuses on extracting diverse relations between image patch features and ignores sufficient intrinsic feature representations of individual image patches. Therefore, an innovative relational representation learning idea is proposed for the first time, which simultaneously focuses on sufficiently mining the intrinsic features of individual image patches and the relations between image patch features. Based on this, we construct a lightweight Relational Representation Learning Network (RRL-Net). Specifically, we innovatively construct an autoencoder to fully characterize the individual intrinsic features, and introduce a Feature Interaction Learning (FIL) module to extract deep-level feature relations. To further fully mine individual intrinsic features, a lightweight Multi-dimensional Global-to-Local Attention (MGLA) module is constructed to enhance the global feature extraction of individual image patches and capture local dependencies within global features. By combining the MGLA module, we further explore the feature extraction network and construct an Attention-based Lightweight Feature Extraction (ALFE) network. In addition, we propose a Multi-Loss Post-Pruning (MLPP) optimization strategy, which greatly promotes network optimization while avoiding increases in parameters and inference time. Extensive experiments demonstrate that our RRL-Net achieves state-of-the-art (SOTA) performance on multiple public datasets. Our code will be made public later.
Submitted: Mar 18, 2024