Paper ID: 2403.11757
Efficient Feature Extraction and Late Fusion Strategy for Audiovisual Emotional Mimicry Intensity Estimation
Jun Yu, Wangyuan Zhu, Jichao Zhu
In this paper, we present the solution to the Emotional Mimicry Intensity (EMI) Estimation challenge, which is part of 6th Affective Behavior Analysis in-the-wild (ABAW) Competition.The EMI Estimation challenge task aims to evaluate the emotional intensity of seed videos by assessing them from a set of predefined emotion categories (i.e., "Admiration", "Amusement", "Determination", "Empathic Pain", "Excitement" and "Joy"). To tackle this challenge, we extracted rich dual-channel visual features based on ResNet18 and AUs for the video modality and effective single-channel features based on Wav2Vec2.0 for the audio modality. This allowed us to obtain comprehensive emotional features for the audiovisual modality. Additionally, leveraging a late fusion strategy, we averaged the predictions of the visual and acoustic models, resulting in a more accurate estimation of audiovisual emotional mimicry intensity. Experimental results validate the effectiveness of our approach, with the average Pearson's correlation Coefficient($\rho$) across the 6 emotion dimensionson the validation set achieving 0.3288.
Submitted: Mar 18, 2024