Paper ID: 2403.12588

Machine Learning of the Prime Distribution

Alexander Kolpakov, A. Alistair Rocke

In the present work we use maximum entropy methods to derive several theorems in probabilistic number theory, including a version of the Hardy-Ramanujan Theorem. We also provide a theoretical argument explaining the experimental observations of Yang-Hui He about the learnability of primes, and posit that the Erd\H{o}s-Kac law would very unlikely be discovered by current machine learning techniques. Numerical experiments that we perform corroborate our theoretical findings.

Submitted: Mar 19, 2024