Paper ID: 2403.13695
Loss Regularizing Robotic Terrain Classification
Shakti Deo Kumar, Sudhanshu Tripathi, Krishna Ujjwal, Sarvada Sakshi Jha, Suddhasil De
Locomotion mechanics of legged robots are suitable when pacing through difficult terrains. Recognising terrains for such robots are important to fully yoke the versatility of their movements. Consequently, robotic terrain classification becomes significant to classify terrains in real time with high accuracy. The conventional classifiers suffer from overfitting problem, low accuracy problem, high variance problem, and not suitable for live dataset. On the other hand, classifying a growing dataset is difficult for convolution based terrain classification. Supervised recurrent models are also not practical for this classification. Further, the existing recurrent architectures are still evolving to improve accuracy of terrain classification based on live variable-length sensory data collected from legged robots. This paper proposes a new semi-supervised method for terrain classification of legged robots, avoiding preprocessing of long variable-length dataset. The proposed method has a stacked Long Short-Term Memory architecture, including a new loss regularization. The proposed method solves the existing problems and improves accuracy. Comparison with the existing architectures show the improvements.
Submitted: Mar 20, 2024