Paper ID: 2403.14808

A Collection of Pragmatic-Similarity Judgments over Spoken Dialog Utterances

Nigel G. Ward, Divette Marco

Automatic measures of similarity between utterances are invaluable for training speech synthesizers, evaluating machine translation, and assessing learner productions. While there exist measures for semantic similarity and prosodic similarity, there are as yet none for pragmatic similarity. To enable the training of such measures, we developed the first collection of human judgments of pragmatic similarity between utterance pairs. Each pair consisting of an utterance extracted from a recorded dialog and a re-enactment of that utterance. Re-enactments were done under various conditions designed to create a variety of degrees of similarity. Each pair was rated on a continuous scale by 6 to 9 judges. The average inter-judge correlation was as high as 0.72 for English and 0.66 for Spanish. We make this data available at https://github.com/divettemarco/PragSim .

Submitted: Mar 21, 2024