Paper ID: 2403.15473
Efficient argument classification with compact language models and ChatGPT-4 refinements
Marcin Pietron, Rafał Olszowski, Jakub Gomułka
Argument mining (AM) is defined as the task of automatically identifying and extracting argumentative components (e.g. premises, claims, etc.) and detecting the existing relations among them (i.e., support, attack, no relations). Deep learning models enable us to analyze arguments more efficiently than traditional methods and extract their semantics. This paper presents comparative studies between a few deep learning-based models in argument mining. The work concentrates on argument classification. The research was done on a wide spectrum of datasets (Args.me, UKP, US2016). The main novelty of this paper is the ensemble model which is based on BERT architecture and ChatGPT-4 as fine tuning model. The presented results show that BERT+ChatGPT-4 outperforms the rest of the models including other Transformer-based and LSTM-based models. The observed improvement is, in most cases, greater than 10The presented analysis can provide crucial insights into how the models for argument classification should be further improved. Additionally, it can help develop a prompt-based algorithm to eliminate argument classification errors.
Submitted: Mar 20, 2024