Paper ID: 2403.15743

A Comparative Study of Artificial Potential Fields and Safety Filters

Ming Li, Zhiyong Sun

In this paper, we have demonstrated that the controllers designed by a classical motion planning tool, namely artificial potential fields (APFs), can be derived from a recently prevalent approach: control barrier function quadratic program (CBF-QP) safety filters. By integrating APF information into the CBF-QP framework, we establish a bridge between these two methodologies. Specifically, this is achieved by employing the attractive potential field as a control Lyapunov function (CLF) to guide the design of the nominal controller, and then the repulsive potential field serves as a reciprocal CBF (RCBF) to define a CBF-QP safety filter. Building on this integration, we extend the design of the CBF-QP safety filter to accommodate a more general class of dynamical models featuring a control-affine structure. This extension yields a special CBF-QP safety filter and a general APF solution suitable for control-affine dynamical models. Through a reach-avoid navigation example, we showcase the efficacy of the developed approaches.

Submitted: Mar 23, 2024