Paper ID: 2403.15918
Towards Adversarial Robustness And Backdoor Mitigation in SSL
Aryan Satpathy, Nilaksh Singh, Dhruva Rajwade, Somesh Kumar
Self-Supervised Learning (SSL) has shown great promise in learning representations from unlabeled data. The power of learning representations without the need for human annotations has made SSL a widely used technique in real-world problems. However, SSL methods have recently been shown to be vulnerable to backdoor attacks, where the learned model can be exploited by adversaries to manipulate the learned representations, either through tampering the training data distribution, or via modifying the model itself. This work aims to address defending against backdoor attacks in SSL, where the adversary has access to a realistic fraction of the SSL training data, and no access to the model. We use novel methods that are computationally efficient as well as generalizable across different problem settings. We also investigate the adversarial robustness of SSL models when trained with our method, and show insights into increased robustness in SSL via frequency domain augmentations. We demonstrate the effectiveness of our method on a variety of SSL benchmarks, and show that our method is able to mitigate backdoor attacks while maintaining high performance on downstream tasks. Code for our work is available at this http URL
Submitted: Mar 23, 2024