Paper ID: 2403.16078

Target Speech Extraction with Pre-trained AV-HuBERT and Mask-And-Recover Strategy

Wenxuan Wu, Xueyuan Chen, Xixin Wu, Haizhou Li, Helen Meng

Audio-visual target speech extraction (AV-TSE) is one of the enabling technologies in robotics and many audio-visual applications. One of the challenges of AV-TSE is how to effectively utilize audio-visual synchronization information in the process. AV-HuBERT can be a useful pre-trained model for lip-reading, which has not been adopted by AV-TSE. In this paper, we would like to explore the way to integrate a pre-trained AV-HuBERT into our AV-TSE system. We have good reasons to expect an improved performance. To benefit from the inter and intra-modality correlations, we also propose a novel Mask-And-Recover (MAR) strategy for self-supervised learning. The experimental results on the VoxCeleb2 dataset show that our proposed model outperforms the baselines both in terms of subjective and objective metrics, suggesting that the pre-trained AV-HuBERT model provides more informative visual cues for target speech extraction. Furthermore, through a comparative study, we confirm that the proposed Mask-And-Recover strategy is significantly effective.

Submitted: Mar 24, 2024