Paper ID: 2403.18734

A vascular synthetic model for improved aneurysm segmentation and detection via Deep Neural Networks

Rafic Nader, Florent Autrusseau, Vincent L'Allinec, Romain Bourcier

We hereby present a full synthetic model, able to mimic the various constituents of the cerebral vascular tree: the cerebral arteries, the bifurcations and the intracranial aneurysms. By building this model, our goal was to provide a substantial dataset of brain arteries which could be used by a 3D Convolutional Neural Network (CNN) to either segment or detect/recognize various vascular diseases (such as artery dissection/thrombosis) or even some portions of the cerebral vasculature, such as the bifurcations or aneurysms. In this study, we will particularly focus on Intra-Cranial Aneurysm (ICA) detection and segmentation. The cerebral aneurysms most often occur on a particular structure of the vascular tree named the Circle of Willis. Various studies have been conducted to detect and monitor the ICAs and those based on Deep Learning (DL) achieve the best performances. Specifically, in this work, we propose a full synthetic 3D model able to mimic the brain vasculature as acquired by Magnetic Resonance Angiography (MRA), and more particularly the Time Of Flight (TOF) principle. Among the various MRI modalities, the MRA-TOF allows to have a relatively good rendering of the blood vessels and is non-invasive (no contrast liquid injection). Our model has been designed to simultaneously mimic the arteries geometry, the ICA shape and the background noise. The geometry of the vascular tree is modeled thanks to an interpolation with 3D Spline functions, and the statistical properties of the background MRI noise is collected from MRA acquisitions and reproduced within the model. In this work, we thoroughly describe the synthetic vasculature model, we build up a neural network designed for ICA segmentation and detection, and finally, we carry out an in-depth evaluation of the performance gap gained thanks to the synthetic model data augmentation.

Submitted: Mar 27, 2024