Paper ID: 2403.20075
Adaptive Decentralized Federated Learning in Energy and Latency Constrained Wireless Networks
Zhigang Yan, Dong Li
In Federated Learning (FL), with parameter aggregated by a central node, the communication overhead is a substantial concern. To circumvent this limitation and alleviate the single point of failure within the FL framework, recent studies have introduced Decentralized Federated Learning (DFL) as a viable alternative. Considering the device heterogeneity, and energy cost associated with parameter aggregation, in this paper, the problem on how to efficiently leverage the limited resources available to enhance the model performance is investigated. Specifically, we formulate a problem that minimizes the loss function of DFL while considering energy and latency constraints. The proposed solution involves optimizing the number of local training rounds across diverse devices with varying resource budgets. To make this problem tractable, we first analyze the convergence of DFL with edge devices with different rounds of local training. The derived convergence bound reveals the impact of the rounds of local training on the model performance. Then, based on the derived bound, the closed-form solutions of rounds of local training in different devices are obtained. Meanwhile, since the solutions require the energy cost of aggregation as low as possible, we modify different graph-based aggregation schemes to solve this energy consumption minimization problem, which can be applied to different communication scenarios. Finally, a DFL framework which jointly considers the optimized rounds of local training and the energy-saving aggregation scheme is proposed. Simulation results show that, the proposed algorithm achieves a better performance than the conventional schemes with fixed rounds of local training, and consumes less energy than other traditional aggregation schemes.
Submitted: Mar 29, 2024