Paper ID: 2403.20080
Mixed-precision Supernet Training from Vision Foundation Models using Low Rank Adapter
Yuiko Sakuma, Masakazu Yoshimura, Junji Otsuka, Atsushi Irie, Takeshi Ohashi
Compression of large and performant vision foundation models (VFMs) into arbitrary bit-wise operations (BitOPs) allows their deployment on various hardware. We propose to fine-tune a VFM to a mixed-precision quantized supernet. The supernet-based neural architecture search (NAS) can be adopted for this purpose, which trains a supernet, and then subnets within arbitrary hardware budgets can be extracted. However, existing methods face difficulties in optimizing the mixed-precision search space and incurring large memory costs during training. To tackle these challenges, first, we study the effective search space design for fine-tuning a VFM by comparing different operators (such as resolution, feature size, width, depth, and bit-widths) in terms of performance and BitOPs reduction. Second, we propose memory-efficient supernet training using a low-rank adapter (LoRA) and a progressive training strategy. The proposed method is evaluated for the recently proposed VFM, Segment Anything Model, fine-tuned on segmentation tasks. The searched model yields about a 95% reduction in BitOPs without incurring performance degradation.
Submitted: Mar 29, 2024