Paper ID: 2403.20188

Distributed Swarm Learning for Edge Internet of Things

Yue Wang, Zhi Tian, FXin Fan, Zhipeng Cai, Cameron Nowzari, Kai Zeng

The rapid growth of Internet of Things (IoT) has led to the widespread deployment of smart IoT devices at wireless edge for collaborative machine learning tasks, ushering in a new era of edge learning. With a huge number of hardware-constrained IoT devices operating in resource-limited wireless networks, edge learning encounters substantial challenges, including communication and computation bottlenecks, device and data heterogeneity, security risks, privacy leakages, non-convex optimization, and complex wireless environments. To address these issues, this article explores a novel framework known as distributed swarm learning (DSL), which combines artificial intelligence and biological swarm intelligence in a holistic manner. By harnessing advanced signal processing and communications, DSL provides efficient solutions and robust tools for large-scale IoT at the edge of wireless networks.

Submitted: Mar 29, 2024