Paper ID: 2403.20309

InstantSplat: Unbounded Sparse-view Pose-free Gaussian Splatting in 40 Seconds

Zhiwen Fan, Wenyan Cong, Kairun Wen, Kevin Wang, Jian Zhang, Xinghao Ding, Danfei Xu, Boris Ivanovic, Marco Pavone, Georgios Pavlakos, Zhangyang Wang, Yue Wang

While novel view synthesis (NVS) from a sparse set of images has advanced significantly in 3D computer vision, it relies on precise initial estimation of camera parameters using Structure-from-Motion (SfM). For instance, the recently developed Gaussian Splatting depends heavily on the accuracy of SfM-derived points and poses. However, SfM processes are time-consuming and often prove unreliable in sparse-view scenarios, where matched features are scarce, leading to accumulated errors and limited generalization capability across datasets. In this study, we introduce a novel and efficient framework to enhance robust NVS from sparse-view images. Our framework, InstantSplat, integrates multi-view stereo(MVS) predictions with point-based representations to construct 3D Gaussians of large-scale scenes from sparse-view data within seconds, addressing the aforementioned performance and efficiency issues by SfM. Specifically, InstantSplat generates densely populated surface points across all training views and determines the initial camera parameters using pixel-alignment. Nonetheless, the MVS points are not globally accurate, and the pixel-wise prediction from all views results in an excessive Gaussian number, yielding a overparameterized scene representation that compromises both training speed and accuracy. To address this issue, we employ a grid-based, confidence-aware Farthest Point Sampling to strategically position point primitives at representative locations in parallel. Next, we enhance pose accuracy and tune scene parameters through a gradient-based joint optimization framework from self-supervision. By employing this simplified framework, InstantSplat achieves a substantial reduction in training time, from hours to mere seconds, and demonstrates robust performance across various numbers of views in diverse datasets.

Submitted: Mar 29, 2024