Paper ID: 2404.01308
Learning to Solve Job Shop Scheduling under Uncertainty
Guillaume Infantes, Stéphanie Roussel, Pierre Pereira, Antoine Jacquet, Emmanuel Benazera
Job-Shop Scheduling Problem (JSSP) is a combinatorial optimization problem where tasks need to be scheduled on machines in order to minimize criteria such as makespan or delay. To address more realistic scenarios, we associate a probability distribution with the duration of each task. Our objective is to generate a robust schedule, i.e. that minimizes the average makespan. This paper introduces a new approach that leverages Deep Reinforcement Learning (DRL) techniques to search for robust solutions, emphasizing JSSPs with uncertain durations. Key contributions of this research include: (1) advancements in DRL applications to JSSPs, enhancing generalization and scalability, (2) a novel method for addressing JSSPs with uncertain durations. The Wheatley approach, which integrates Graph Neural Networks (GNNs) and DRL, is made publicly available for further research and applications.
Submitted: Mar 4, 2024