Paper ID: 2404.02205

A Holistic Indicator of Polarization to Measure Online Sexism

Vahid Ghafouri, Jose Such, Guillermo Suarez-Tangil

The online trend of the manosphere and feminist discourse on social networks requires a holistic measure of the level of sexism in an online community. This indicator is important for policymakers and moderators of online communities (e.g., subreddits) and computational social scientists, either to revise moderation strategies based on the degree of sexism or to match and compare the temporal sexism across different platforms and communities with real-time events and infer social scientific insights. In this paper, we build a model that can provide a comparable holistic indicator of toxicity targeted toward male and female identity and male and female individuals. Despite previous supervised NLP methods that require annotation of toxic comments at the target level (e.g. annotating comments that are specifically toxic toward women) to detect targeted toxic comments, our indicator uses supervised NLP to detect the presence of toxicity and unsupervised word embedding association test to detect the target automatically. We apply our model to gender discourse communities (e.g., r/TheRedPill, r/MGTOW, r/FemaleDatingStrategy) to detect the level of toxicity toward genders (i.e., sexism). Our results show that our framework accurately and consistently (93% correlation) measures the level of sexism in a community. We finally discuss how our framework can be generalized in the future to measure qualities other than toxicity (e.g. sentiment, humor) toward general-purpose targets and turn into an indicator of different sorts of polarizations.

Submitted: Apr 2, 2024