Paper ID: 2404.02254

On Stronger Computational Separations Between Multimodal and Unimodal Machine Learning

Ari Karchmer

Recently, multimodal machine learning has enjoyed huge empirical success (e.g. GPT-4). Motivated to develop theoretical justification for this empirical success, Lu (NeurIPS '23, ALT '24) introduces a theory of multimodal learning, and considers possible \textit{separations} between theoretical models of multimodal and unimodal learning. In particular, Lu (ALT '24) shows a computational separation, which is relevant to \textit{worst-case} instances of the learning task. In this paper, we give a stronger \textit{average-case} computational separation, where for ``typical'' instances of the learning task, unimodal learning is computationally hard, but multimodal learning is easy. We then question how ``natural'' the average-case separation is. Would it be encountered in practice? To this end, we prove that under basic conditions, any given computational separation between average-case unimodal and multimodal learning tasks implies a corresponding cryptographic key agreement protocol. We suggest to interpret this as evidence that very strong \textit{computational} advantages of multimodal learning may arise \textit{infrequently} in practice, since they exist only for the ``pathological'' case of inherently cryptographic distributions. However, this does not apply to possible (super-polynomial) \textit{statistical} advantages.

Submitted: Apr 2, 2024