Paper ID: 2404.03012

Spectral Clustering in Convex and Constrained Settings

Swarup Ranjan Behera, Vijaya V. Saradhi

Spectral clustering methods have gained widespread recognition for their effectiveness in clustering high-dimensional data. Among these techniques, constrained spectral clustering has emerged as a prominent approach, demonstrating enhanced performance by integrating pairwise constraints. However, the application of such constraints to semidefinite spectral clustering, a variant that leverages semidefinite programming to optimize clustering objectives, remains largely unexplored. In this paper, we introduce a novel framework for seamlessly integrating pairwise constraints into semidefinite spectral clustering. Our methodology systematically extends the capabilities of semidefinite spectral clustering to capture complex data structures, thereby addressing real-world clustering challenges more effectively. Additionally, we extend this framework to encompass both active and self-taught learning scenarios, further enhancing its versatility and applicability. Empirical studies conducted on well-known datasets demonstrate the superiority of our proposed framework over existing spectral clustering methods, showcasing its robustness and scalability across diverse datasets and learning settings. By bridging the gap between constrained learning and semidefinite spectral clustering, our work contributes to the advancement of spectral clustering techniques, offering researchers and practitioners a versatile tool for addressing complex clustering challenges in various real-world applications. Access to the data, code, and experimental results is provided for further exploration (https://github.com/swarupbehera/SCCCS).

Submitted: Apr 3, 2024