Paper ID: 2404.03211

Convergence Conditions of Online Regularized Statistical Learning in Reproducing Kernel Hilbert Space With Non-Stationary Data

Xiwei Zhang, Tao Li

We study the convergence of recursive regularized learning algorithms in the reproducing kernel Hilbert space (RKHS) with dependent and non-stationary online data streams. Firstly, we study the mean square asymptotic stability of a class of random difference equations in RKHS, whose non-homogeneous terms are martingale difference sequences dependent on the homogeneous ones. Secondly, we introduce the concept of random Tikhonov regularization path, and show that if the regularization path is slowly time-varying in some sense, then the output of the algorithm is consistent with the regularization path in mean square. Furthermore, if the data streams also satisfy the RKHS persistence of excitation condition, i.e. there exists a fixed length of time period, such that the conditional expectation of the operators induced by the input data accumulated over every time period has a uniformly strictly positive compact lower bound in the sense of the operator order with respect to time, then the output of the algorithm is consistent with the unknown function in mean square. Finally, for the case with independent and non-identically distributed data streams, the algorithm achieves the mean square consistency provided the marginal probability measures induced by the input data are slowly time-varying and the average measure over each fixed-length time period has a uniformly strictly positive lower bound.

Submitted: Apr 4, 2024