Paper ID: 2404.03775
A Systems Theoretic Approach to Online Machine Learning
Anli du Preez, Peter A. Beling, Tyler Cody
The machine learning formulation of online learning is incomplete from a systems theoretic perspective. Typically, machine learning research emphasizes domains and tasks, and a problem solving worldview. It focuses on algorithm parameters, features, and samples, and neglects the perspective offered by considering system structure and system behavior or dynamics. Online learning is an active field of research and has been widely explored in terms of statistical theory and computational algorithms, however, in general, the literature still lacks formal system theoretical frameworks for modeling online learning systems and resolving systems-related concept drift issues. Furthermore, while the machine learning formulation serves to classify methods and literature, the systems theoretic formulation presented herein serves to provide a framework for the top-down design of online learning systems, including a novel definition of online learning and the identification of key design parameters. The framework is formulated in terms of input-output systems and is further divided into system structure and system behavior. Concept drift is a critical challenge faced in online learning, and this work formally approaches it as part of the system behavior characteristics. Healthcare provider fraud detection using machine learning is used as a case study throughout the paper to ground the discussion in a real-world online learning challenge.
Submitted: Apr 4, 2024