Paper ID: 2404.04312
Half-Space Feature Learning in Neural Networks
Mahesh Lorik Yadav, Harish Guruprasad Ramaswamy, Chandrashekar Lakshminarayanan
There currently exist two extreme viewpoints for neural network feature learning -- (i) Neural networks simply implement a kernel method (a la NTK) and hence no features are learned (ii) Neural networks can represent (and hence learn) intricate hierarchical features suitable for the data. We argue in this paper neither interpretation is likely to be correct based on a novel viewpoint. Neural networks can be viewed as a mixture of experts, where each expert corresponds to a (number of layers length) path through a sequence of hidden units. We use this alternate interpretation to motivate a model, called the Deep Linearly Gated Network (DLGN), which sits midway between deep linear networks and ReLU networks. Unlike deep linear networks, the DLGN is capable of learning non-linear features (which are then linearly combined), and unlike ReLU networks these features are ultimately simple -- each feature is effectively an indicator function for a region compactly described as an intersection of (number of layers) half-spaces in the input space. This viewpoint allows for a comprehensive global visualization of features, unlike the local visualizations for neurons based on saliency/activation/gradient maps. Feature learning in DLGNs is shown to happen and the mechanism with which this happens is through learning half-spaces in the input space that contain smooth regions of the target function. Due to the structure of DLGNs, the neurons in later layers are fundamentally the same as those in earlier layers -- they all represent a half-space -- however, the dynamics of gradient descent impart a distinct clustering to the later layer neurons. We hypothesize that ReLU networks also have similar feature learning behaviour.
Submitted: Apr 5, 2024