Paper ID: 2404.05229
Empirical Upscaling of Point-scale Soil Moisture Measurements for Spatial Evaluation of Model Simulations and Satellite Retrievals
Yi Yu, Brendan P. Malone, Luigi J. Renzullo
The evaluation of modelled or satellite-derived soil moisture (SM) estimates is usually dependent on comparisons against in-situ SM measurements. However, the inherent mismatch in spatial support (i.e., scale) necessitates a cautious interpretation of point-to-pixel comparisons. The upscaling of the in-situ measurements to a commensurate resolution to that of the modelled or retrieved SM will lead to a fairer comparison and statistically more defensible evaluation. In this study, we presented an upscaling approach that combines spatiotemporal fusion with machine learning to extrapolate point-scale SM measurements from 28 in-situ sites to a 100 m resolution for an agricultural area of 100 km by 100 km. We conducted a four-fold cross-validation, which consistently demonstrated comparable correlation performance across folds, ranging from 0.6 to 0.9. The proposed approach was further validated based on a cross-cluster strategy by using two spatial subsets within the study area, denoted as cluster A and B, each of which equally comprised of 12 in-situ sites. The cross-cluster validation underscored the capability of the upscaling approach to map the spatial variability of SM within areas that were not covered by in-situ sites, with correlation performance ranging between 0.6 and 0.8. In general, our proposed upscaling approach offers an avenue to extrapolate point measurements of SM to a spatial scale more akin to climatic model grids or remotely sensed observations. Future investigations should delve into a further evaluation of the upscaling approach using independent data, such as model simulations, satellite retrievals or field campaign data.
Submitted: Apr 8, 2024