Paper ID: 2404.05843

Softmax Attention with Constant Cost per Token

Franz A. Heinsen

We propose a simple modification to the conventional attention mechanism applied by Transformers: Instead of quantifying pairwise query-key similarity with scaled dot-products, we quantify it with the logarithms of scaled dot-products of exponentials. Our modification linearizes attention with exponential kernel feature maps, whose corresponding feature function is infinite dimensional. We show that our modification is expressible as a composition of log-sums of exponentials, with a latent space of constant size, enabling application with constant time and space complexity per token. We implement our modification, verify that it works in practice, and conclude that it is a promising alternative to conventional attention.

Submitted: Apr 8, 2024