Paper ID: 2404.06365
Dynamic Resolution Guidance for Facial Expression Recognition
Songpan Wang, Xu Li, Tianxiang Jiang, Yuanlun Xie
Facial expression recognition (FER) is vital for human-computer interaction and emotion analysis, yet recognizing expressions in low-resolution images remains challenging. This paper introduces a practical method called Dynamic Resolution Guidance for Facial Expression Recognition (DRGFER) to effectively recognize facial expressions in images with varying resolutions without compromising FER model accuracy. Our framework comprises two main components: the Resolution Recognition Network (RRN) and the Multi-Resolution Adaptation Facial Expression Recognition Network (MRAFER). The RRN determines image resolution, outputs a binary vector, and the MRAFER assigns images to suitable facial expression recognition networks based on resolution. We evaluated DRGFER on widely-used datasets RAFDB and FERPlus, demonstrating that our method retains optimal model performance at each resolution and outperforms alternative resolution approaches. The proposed framework exhibits robustness against resolution variations and facial expressions, offering a promising solution for real-world applications.
Submitted: Apr 9, 2024