Paper ID: 2404.06704

Convolution-based Probability Gradient Loss for Semantic Segmentation

Guohang Shan, Shuangcheng Jia

In this paper, we introduce a novel Convolution-based Probability Gradient (CPG) loss for semantic segmentation. It employs convolution kernels similar to the Sobel operator, capable of computing the gradient of pixel intensity in an image. This enables the computation of gradients for both ground-truth and predicted category-wise probabilities. It enhances network performance by maximizing the similarity between these two probability gradients. Moreover, to specifically enhance accuracy near the object's boundary, we extract the object boundary based on the ground-truth probability gradient and exclusively apply the CPG loss to pixels belonging to boundaries. CPG loss proves to be highly convenient and effective. It establishes pixel relationships through convolution, calculating errors from a distinct dimension compared to pixel-wise loss functions such as cross-entropy loss. We conduct qualitative and quantitative analyses to evaluate the impact of the CPG loss on three well-established networks (DeepLabv3-Resnet50, HRNetV2-OCR, and LRASPP_MobileNet_V3_Large) across three standard segmentation datasets (Cityscapes, COCO-Stuff, ADE20K). Our extensive experimental results consistently and significantly demonstrate that the CPG loss enhances the mean Intersection over Union.

Submitted: Apr 10, 2024