Paper ID: 2404.07361
Gradient Networks
Shreyas Chaudhari, Srinivasa Pranav, José M. F. Moura
Directly parameterizing and learning gradients of functions has widespread significance, with specific applications in optimization, generative modeling, and optimal transport. This paper introduces gradient networks (GradNets): novel neural network architectures that parameterize gradients of various function classes. GradNets exhibit specialized architectural constraints that ensure correspondence to gradient functions. We provide a comprehensive GradNet design framework that includes methods for transforming GradNets into monotone gradient networks (mGradNets), which are guaranteed to represent gradients of convex functions. We establish the approximation capabilities of the proposed GradNet and mGradNet. Our results demonstrate that these networks universally approximate the gradients of (convex) functions. Furthermore, these networks can be customized to correspond to specific spaces of (monotone) gradient functions, including gradients of transformed sums of (convex) ridge functions. Our analysis leads to two distinct GradNet architectures, GradNet-C and GradNet-M, and we describe the corresponding monotone versions, mGradNet-C and mGradNet-M. Our empirical results show that these architectures offer efficient parameterizations and outperform popular methods in gradient field learning tasks.
Submitted: Apr 10, 2024