Paper ID: 2404.07532

Bayesian Federated Model Compression for Communication and Computation Efficiency

Chengyu Xia, Danny H. K. Tsang, Vincent K. N. Lau

In this paper, we investigate Bayesian model compression in federated learning (FL) to construct sparse models that can achieve both communication and computation efficiencies. We propose a decentralized Turbo variational Bayesian inference (D-Turbo-VBI) FL framework where we firstly propose a hierarchical sparse prior to promote a clustered sparse structure in the weight matrix. Then, by carefully integrating message passing and VBI with a decentralized turbo framework, we propose the D-Turbo-VBI algorithm which can (i) reduce both upstream and downstream communication overhead during federated training, and (ii) reduce the computational complexity during local inference. Additionally, we establish the convergence property for thr proposed D-Turbo-VBI algorithm. Simulation results show the significant gain of our proposed algorithm over the baselines in reducing communication overhead during federated training and computational complexity of final model.

Submitted: Apr 11, 2024