Paper ID: 2404.08118

HLTCOE at TREC 2023 NeuCLIR Track

Eugene Yang, Dawn Lawrie, James Mayfield

The HLTCOE team applied PLAID, an mT5 reranker, and document translation to the TREC 2023 NeuCLIR track. For PLAID we included a variety of models and training techniques -- the English model released with ColBERT v2, translate-train~(TT), Translate Distill~(TD) and multilingual translate-train~(MTT). TT trains a ColBERT model with English queries and passages automatically translated into the document language from the MS-MARCO v1 collection. This results in three cross-language models for the track, one per language. MTT creates a single model for all three document languages by combining the translations of MS-MARCO passages in all three languages into mixed-language batches. Thus the model learns about matching queries to passages simultaneously in all languages. Distillation uses scores from the mT5 model over non-English translated document pairs to learn how to score query-document pairs. The team submitted runs to all NeuCLIR tasks: the CLIR and MLIR news task as well as the technical documents task.

Submitted: Apr 11, 2024