Paper ID: 2404.08923

Trustworthy Multimodal Fusion for Sentiment Analysis in Ordinal Sentiment Space

Zhuyang Xie, Yan Yang, Jie Wang, Xiaorong Liu, Xiaofan Li

Multimodal video sentiment analysis aims to integrate multiple modal information to analyze the opinions and attitudes of speakers. Most previous work focuses on exploring the semantic interactions of intra- and inter-modality. However, these works ignore the reliability of multimodality, i.e., modalities tend to contain noise, semantic ambiguity, missing modalities, etc. In addition, previous multimodal approaches treat different modalities equally, largely ignoring their different contributions. Furthermore, existing multimodal sentiment analysis methods directly regress sentiment scores without considering ordinal relationships within sentiment categories, with limited performance. To address the aforementioned problems, we propose a trustworthy multimodal sentiment ordinal network (TMSON) to improve performance in sentiment analysis. Specifically, we first devise a unimodal feature extractor for each modality to obtain modality-specific features. Then, an uncertainty distribution estimation network is customized, which estimates the unimodal uncertainty distributions. Next, Bayesian fusion is performed on the learned unimodal distributions to obtain multimodal distributions for sentiment prediction. Finally, an ordinal-aware sentiment space is constructed, where ordinal regression is used to constrain the multimodal distributions. Our proposed TMSON outperforms baselines on multimodal sentiment analysis tasks, and empirical results demonstrate that TMSON is capable of reducing uncertainty to obtain more robust predictions.

Submitted: Apr 13, 2024