Paper ID: 2404.09155

Mitigating Heterogeneity among Factor Tensors via Lie Group Manifolds for Tensor Decomposition Based Temporal Knowledge Graph Embedding

Jiang Li, Xiangdong Su, Yeyun Gong, Guanglai Gao

Recent studies have highlighted the effectiveness of tensor decomposition methods in the Temporal Knowledge Graphs Embedding (TKGE) task. However, we found that inherent heterogeneity among factor tensors in tensor decomposition significantly hinders the tensor fusion process and further limits the performance of link prediction. To overcome this limitation, we introduce a novel method that maps factor tensors onto a unified smooth Lie group manifold to make the distribution of factor tensors approximating homogeneous in tensor decomposition. We provide the theoretical proof of our motivation that homogeneous tensors are more effective than heterogeneous tensors in tensor fusion and approximating the target for tensor decomposition based TKGE methods. The proposed method can be directly integrated into existing tensor decomposition based TKGE methods without introducing extra parameters. Extensive experiments demonstrate the effectiveness of our method in mitigating the heterogeneity and in enhancing the tensor decomposition based TKGE models.

Submitted: Apr 14, 2024