Paper ID: 2404.09537
Machine Learning Techniques for Python Source Code Vulnerability Detection
Talaya Farasat, Joachim Posegga
Software vulnerabilities are a fundamental reason for the prevalence of cyber attacks and their identification is a crucial yet challenging problem in cyber security. In this paper, we apply and compare different machine learning algorithms for source code vulnerability detection specifically for Python programming language. Our experimental evaluation demonstrates that our Bidirectional Long Short-Term Memory (BiLSTM) model achieves a remarkable performance (average Accuracy = 98.6%, average F-Score = 94.7%, average Precision = 96.2%, average Recall = 93.3%, average ROC = 99.3%), thereby, establishing a new benchmark for vulnerability detection in Python source code.
Submitted: Apr 15, 2024