Paper ID: 2404.09656
Learn Your Reference Model for Real Good Alignment
Alexey Gorbatovski, Boris Shaposhnikov, Alexey Malakhov, Nikita Surnachev, Yaroslav Aksenov, Ian Maksimov, Nikita Balagansky, Daniil Gavrilov
The complexity of the alignment problem stems from the fact that existing methods are considered unstable. Reinforcement Learning from Human Feedback (RLHF) addresses this issue by minimizing the KL divergence between the trained policy and the initial supervised fine-tuned policy (SFT) to avoid generating out-of-domain samples for the reward model (RM). Recently, many methods have emerged that shift from online to offline optimization, reformulating the RLHF objective and removing the reward model (DPO, IPO, KTO). Despite eliminating the reward model and the challenges it posed, these algorithms are still constrained in terms of closeness of the trained policy to the SFT one. In our paper, we argue that this implicit limitation in the offline optimization methods leads to suboptimal results. To address this issue, we propose a class of new methods called Trust Region (TR-DPO, TR-IPO, TR-KTO), which update the reference policy during training. With this straightforward update approach, we demonstrate the effectiveness of the new paradigm of language model alignment against the classical one on the Anthropic-HH and Reddit TL;DR datasets. Most notably, when automatically comparing TR methods and baselines side by side using pretrained Pythia 6.9B models on the Reddit TL;DR task, the difference in win rates reaches 8.4% for DPO, 14.3% for IPO, and 15% for KTO. Finally, by assessing model response ratings grounded on criteria such as coherence, correctness, helpfulness, and harmlessness, we demonstrate that our proposed methods significantly outperform existing techniques.
Submitted: Apr 15, 2024