Paper ID: 2404.09896
Accelerating Ensemble Error Bar Prediction with Single Models Fits
Vidit Agrawal, Shixin Zhang, Lane E. Schultz, Dane Morgan
Ensemble models can be used to estimate prediction uncertainties in machine learning models. However, an ensemble of N models is approximately N times more computationally demanding compared to a single model when it is used for inference. In this work, we explore fitting a single model to predicted ensemble error bar data, which allows us to estimate uncertainties without the need for a full ensemble. Our approach is based on three models: Model A for predictive accuracy, Model $A_{E}$ for traditional ensemble-based error bar prediction, and Model B, fit to data from Model $A_{E}$, to be used for predicting the values of $A_{E}$ but with only one model evaluation. Model B leverages synthetic data augmentation to estimate error bars efficiently. This approach offers a highly flexible method of uncertainty quantification that can approximate that of ensemble methods but only requires a single extra model evaluation over Model A during inference. We assess this approach on a set of problems in materials science.
Submitted: Apr 15, 2024