Paper ID: 2404.10515
An Enhanced Differential Grouping Method for Large-Scale Overlapping Problems
Maojiang Tian, Mingke Chen, Wei Du, Yang Tang, Yaochu Jin
Large-scale overlapping problems are prevalent in practical engineering applications, and the optimization challenge is significantly amplified due to the existence of shared variables. Decomposition-based cooperative coevolution (CC) algorithms have demonstrated promising performance in addressing large-scale overlapping problems. However, current CC frameworks designed for overlapping problems rely on grouping methods for the identification of overlapping problem structures and the current grouping methods for large-scale overlapping problems fail to consider both accuracy and efficiency simultaneously. In this article, we propose a two-stage enhanced grouping method for large-scale overlapping problems, called OEDG, which achieves accurate grouping while significantly reducing computational resource consumption. In the first stage, OEDG employs a grouping method based on the finite differences principle to identify all subcomponents and shared variables. In the second stage, we propose two grouping refinement methods, called subcomponent union detection (SUD) and subcomponent detection (SD), to enhance and refine the grouping results. SUD examines the information of the subcomponents and shared variables obtained in the previous stage, and SD corrects inaccurate grouping results. To better verify the performance of the proposed OEDG, we propose a series of novel benchmarks that consider various properties of large-scale overlapping problems, including the topology structure, overlapping degree, and separability. Extensive experimental results demonstrate that OEDG is capable of accurately grouping different types of large-scale overlapping problems while consuming fewer computational resources. Finally, we empirically verify that the proposed OEDG can effectively improve the optimization performance of diverse large-scale overlapping problems.
Submitted: Apr 16, 2024