Paper ID: 2404.10796

Black-box Adversarial Transferability: An Empirical Study in Cybersecurity Perspective

Khushnaseeb Roshan, Aasim Zafar

The rapid advancement of artificial intelligence within the realm of cybersecurity raises significant security concerns. The vulnerability of deep learning models in adversarial attacks is one of the major issues. In adversarial machine learning, malicious users try to fool the deep learning model by inserting adversarial perturbation inputs into the model during its training or testing phase. Subsequently, it reduces the model confidence score and results in incorrect classifications. The novel key contribution of the research is to empirically test the black-box adversarial transferability phenomena in cyber attack detection systems. It indicates that the adversarial perturbation input generated through the surrogate model has a similar impact on the target model in producing the incorrect classification. To empirically validate this phenomenon, surrogate and target models are used. The adversarial perturbation inputs are generated based on the surrogate-model for which the hacker has complete information. Based on these adversarial perturbation inputs, both surrogate and target models are evaluated during the inference phase. We have done extensive experimentation over the CICDDoS-2019 dataset, and the results are classified in terms of various performance metrics like accuracy, precision, recall, and f1-score. The findings indicate that any deep learning model is highly susceptible to adversarial attacks, even if the attacker does not have access to the internal details of the target model. The results also indicate that white-box adversarial attacks have a severe impact compared to black-box adversarial attacks. There is a need to investigate and explore adversarial defence techniques to increase the robustness of the deep learning models against adversarial attacks.

Submitted: Apr 15, 2024