Paper ID: 2404.11916
Skeleton: A New Framework for Accelerating Language Models via Task Neuron Localized Prompt Tuning
Nakyeong Yang, Jiwon Moon, Junseok Kim, Yunah Jang, Kyomin Jung
Prompt tuning methods have shown comparable performance to general training methods as parameter-efficient fine-tuning (PEFT) methods in various natural language understanding tasks. However, existing prompt tuning methods still utilize the entire model architecture even when solving a specific task, which prevents them from accelerating inference speed during the application procedure. In this paper, we propose a novel prompt tuning framework called Skeleton to efficiently utilize a language model in terms of memory and time complexity for solving various tasks, retaining only task-relevant neurons by using an explainability method. From our framework, we can efficiently solve various tasks by using only task-relevant neurons and prepending adequate task-specific prompt tokens with only a single language model. Experiments reveal that our method significantly enhances inference efficiency (at most x 1.73 speed up) for various widely used benchmarks, showing comparable performance to the prompt tuning method. Moreover, our method is applicable across various transformer-based architectures, confirming its practicality and scalability.
Submitted: Apr 18, 2024