Paper ID: 2404.13793

Lightweight Connective Detection Using Gradient Boosting

Mustafa Erolcan Er, Murathan Kurfalı, Deniz Zeyrek

In this work, we introduce a lightweight discourse connective detection system. Employing gradient boosting trained on straightforward, low-complexity features, this proposed approach sidesteps the computational demands of the current approaches that rely on deep neural networks. Considering its simplicity, our approach achieves competitive results while offering significant gains in terms of time even on CPU. Furthermore, the stable performance across two unrelated languages suggests the robustness of our system in the multilingual scenario. The model is designed to support the annotation of discourse relations, particularly in scenarios with limited resources, while minimizing performance loss.

Submitted: Apr 21, 2024