Paper ID: 2404.13919
Navigating the Path of Writing: Outline-guided Text Generation with Large Language Models
Yukyung Lee, Soonwon Ka, Bokyung Son, Pilsung Kang, Jaewook Kang
Large Language Models (LLMs) have significantly impacted the writing process, enabling collaborative content creation and enhancing productivity. However, generating high-quality, user-aligned text remains challenging. In this paper, we propose Writing Path, a framework that uses explicit outlines to guide LLMs in generating goal-oriented, high-quality pieces of writing. Our approach draws inspiration from structured writing planning and reasoning paths, focusing on capturing and reflecting user intentions throughout the writing process. We construct a diverse dataset from unstructured blog posts to benchmark writing performance and introduce a comprehensive evaluation framework assessing the quality of outlines and generated texts. Our evaluations with GPT-3.5-turbo, GPT-4, and HyperCLOVA X demonstrate that the Writing Path approach significantly enhances text quality according to both LLMs and human evaluations. This study highlights the potential of integrating writing-specific techniques into LLMs to enhance their ability to meet the diverse writing needs of users.
Submitted: Apr 22, 2024