Paper ID: 2404.14109
CKD: Contrastive Knowledge Distillation from A Sample-wise Perspective
Wencheng Zhu, Xin Zhou, Pengfei Zhu, Yu Wang, Qinghua Hu
In this paper, we present a simple yet effective contrastive knowledge distillation approach, which can be formulated as a sample-wise alignment problem with intra- and inter-sample constraints. Unlike traditional knowledge distillation methods that concentrate on maximizing feature similarities or preserving class-wise semantic correlations between teacher and student features, our method attempts to recover the "dark knowledge" by aligning sample-wise teacher and student logits. Specifically, our method first minimizes logit differences within the same sample by considering their numerical values, thus preserving intra-sample similarities. Next, we bridge semantic disparities by leveraging dissimilarities across different samples. Note that constraints on intra-sample similarities and inter-sample dissimilarities can be efficiently and effectively reformulated into a contrastive learning framework with newly designed positive and negative pairs. The positive pair consists of the teacher's and student's logits derived from an identical sample, while the negative pairs are formed by using logits from different samples. With this formulation, our method benefits from the simplicity and efficiency of contrastive learning through the optimization of InfoNCE, yielding a run-time complexity that is far less than $O(n^2)$, where $n$ represents the total number of training samples. Furthermore, our method can eliminate the need for hyperparameter tuning, particularly related to temperature parameters and large batch sizes. We conduct comprehensive experiments on three datasets including CIFAR-100, ImageNet-1K, and MS COCO. Experimental results clearly confirm the effectiveness of the proposed method on both image classification and object detection tasks. Our source codes will be publicly available at https://github.com/wencheng-zhu/CKD.
Submitted: Apr 22, 2024