Paper ID: 2404.15405
Photometry of Saturated Stars with Neural Networks
Dominik Winecki, Christopher S. Kochanek
We use a multilevel perceptron (MLP) neural network to obtain photometry of saturated stars in the All-Sky Automated Survey for Supernovae (ASAS-SN). The MLP can obtain fairly unbiased photometry for stars from g~4 to 14~mag, particularly compared to the dispersion (15%-85% 1sigma range around the median) of 0.12 mag for saturated (g<11.5 mag) stars. More importantly, the light curve of a non-variable saturated star has a median dispersion of only 0.037 mag. The MLP light curves are, in many cases, spectacularly better than those provided by the standard ASAS-SN pipelines. While the network was trained on g band data from only one of ASAS-SN's 20 cameras, initial experiments suggest that it can be used for any camera and the older ASAS-SN V band data as well. The dominant problems seem to be associated with correctable issues in the ASAS-SN data reduction pipeline for saturated stars more than the MLP itself. The method is publicly available as a light curve option on ASAS-SN Sky Patrol v1.0.
Submitted: Apr 23, 2024